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FORECASTING EXCHANGE RATES USING GENERAL REGRESSION 
NEURAL NETWORKS

Scope and Purpose -- Predicting currency movements has always been a problematic task as
most conventional econometric models are not able to forecast exchange rates with significantly
higher accuracy than a naive random walk model. For large multinational firms which conduct
substantial currency transfers in the course of business, being able to accurately forecast the
movements of exchange rates can result in considerable improvement in the overall profitability
of the firm.  In this study, we apply the General Regression Neural Network (GRNN) to predict
the monthly exchange rates of three currencies, British pound, Canadian dollar, and Japanese
yen.  Our empirical experiment shows that the performance of GRNN is better than other neural
network and econometric techniques included in this study.  The results demonstrate the
predictive strength of GRNN and its potential for solving financial forecasting problems.

Keywords: General regression neural networks, currency exchange rate, forecasting.
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1. INTRODUCTION

Applying quantitative methods for forecasting in financial markets and assisting

investment decision making has become more indispensable in business practices than ever

before.  For large multinational firms which conduct substantial currency transfers in the course

of business, being able to accurately forecast movements of currency exchange rates can result in

substantial improvement in the overall profitability of the firm.  Nevertheless, predicting

exchange rate movements is still a problematic task.  Most conventional econometric models are

not able to forecast exchange rates with significantly higher accuracy than a naive random walk

model.  In recent years, there has been a growing interest to adopt the state-of-the-art artificial

intelligence technologies to solve the problem.  One stream of these advanced techniques focuses

on the use of artificial neural networks (ANN) to analyze the historical data and provide

predictions to future movements in the foreign exchange market.  In this study, we apply a

special class of neural networks, called General Regression Neural Network (GRNN), to forecast

the monthly exchange rates for three internationally traded currencies, Canadian dollar, Japanese

yen, and British pound.  In order to provide a fair and robust evaluation of the GRNN, relative

performance against other forecasting approaches are included in our empirical investigation. 

Specifically, the performance of the GRNN is compared with those of the multi-layered

feedforward neural network (MLFN), the type of ANN used in many research studies, and the

models based on multivariate transfer function, a general econometric forecasting tool.  In

addition, random walk forecasts are generated to give benchmark comparisons. 

The remainder of this paper is organized as follows.   A review of the literature is given

in the next section.  In section 3, we give an explanation of the logic and operations used by the

GRNN.  Then, a description of the empirical data employed in our study is provided in section 4. 
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This section also explains the neural network training paradigm and presents the model

specifications for the forecasting approaches tested in the experiment. In section 5, a description

to our statistical analyses is presented and the experimental findings are discussed.  The paper is

then concluded in section 6.

2. LITERATURE REVIEW

2.1 Exchange Rate Forecasting

The theory of exchange rate determination is in an unsatisfactory state. From the

theoretical point of view, the debates between the traditional flow approach and the modern

asset-market approach have seen the victory of the latter.  However, from the empirical point of

view, the forecasting ability of the theoretical models remains very poor.  The results of Meese

and Rogoff [1][2][3] came as a shock to the profession.  According to these studies, the current

structural models of exchange-rate determination failed to outperform the random walk model in

out-of-sample forecasting experiments even when the actual realized values of the explanatory

variables were used (ex-post forecasts).  The results of Meese and Rogoff have been confirmed

in many subsequent papers (e.g., Alexander and Thomas [4], Gandolfo, Padoan and Paladino

[5][6], and Sarantis and Stewart [7][8]).  Moreover, even with the use of sophisticated

techniques, such as time-varying-coefficients, the forecasts are only marginally better that the

random walk model (Schinasi and Swamy [9]).

The models considered by Meese and Rogoff were the flexible-price (Frenkel-Bilson)

monetary model, the sticky-price (Dornbusch-Frankel) monetary model, and the sticky-price

(Hooper-Morton) asset model.  Other models for exchange rate forecasting include the portfolio

balance model, and the uncovered interest parity model.  Of the three models used by Meese and
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Rogoff, the Hooper-Morton model is more general and nests the other two models.  However, as

argued in the previous paragraph, those three models have been shown to be unsatisfactory.  The

evidence related to the portfolio balance model was ambiguous (Sarantis and Stewart [7]).  On

the other hand, both Fisher et al. [10] and Sarantis and Stewart [7] found that the models based

on a modified uncovered interest parity (MUIP) approach showed some promising results

compared to the other conventional theoretical approaches.   In a related paper, Sarantis and

Stewart [8] provided evidence that exchange rate forecasting models based on the MUIP

produced more accurate out-of-sample forecasts than the portfolio balance model for all forecast

horizons, thus arguing in favor of the MUIP approach to exchange rate determination and

forecasting.

In light of the previous literature, we will consider both univariate and multivariate

approaches to exchange rate forecasting.  Furthermore, given the mounting evidence favoring the

MUIP approach to exchange rate modeling, we use the MUIP relationship as the theoretical

basis for our multivariate specifications in our experimental investigation.

2.2 MUIP Exchange Rate Relationship

Essentially, Sarantis and Stewart [7][8] showed that the MUIP relationship can be

modeled and written as follow:

     (1)

where e is the natural logarithm of the exchange rate, defined as the foreign currency price of

domestic currency.  r, π, p, and (ca/ny) represent the logarithm of nominal short-term interest
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rate, expected price inflation rate, the logarithm of the price level, and the ratio of current

account to nominal GDP for the domestic economy, respectively.  Asterisks denote the

corresponding foreign variables.  µ is the error term.  The variables  (ca/ny) and  (ca*/ny*) are

proxies for the risk premium.  Equation 1 is a modified version of the real uncovered interest

parity (MUIP) relationship adjusted for risk.  Sarantis and Stewart [7] provided a more detailed

discussion and investigation of this relationship.

2.3 Applications of Neural Networks

In the last decade, applications associated with artificial neural network (ANN) has been

gaining popularity in both the academic research and practitioner’s sectors.  The basic structure

of and operations performed by the ANN emulate those found in a biological neural system.  

Basic notions of the concepts and principals of the ANN systems and their training procedures

can be found in Rumelhart and McClelland [11], Lippman [12], and Medsker, Turban and Trippi

[13].  Many of the countless applications of this artificial intelligence technology are related to

the financial decision making.   Hawley, Johnson, and Raina [14] provides an overview of the

neural network models in the field of finance.  

According to Hawley et. al., there is a diversity of financial applications for neural

networks in the areas of corporate finance, investment analysis, and banking.  A review on recent

literature also reveals financial studies on a wide variety of subjects such as bankruptcy

prediction (Tsukuda and Baba [15], Tam and Kiang [16]), prediction of savings and loan

association failures (Salchenberger, Cinar, and Lash [17]), credit evaluation (Jensen [18],

Collins, Ghosh and Scofield [19]), analysis of financial statements (Kryzanowski and Galler

[20]), corporate distress diagnosis (Altman, Marco, and Varetto [21]), bond rating (Dutta and
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Shekhar [22]), initial stock pricing (Jain and Nag [23]), currency exchange rate forecasting

(Refenes [24]), stock market analysis (Hutchinson, Lo, and Poggio [25], Kamijo and Tanigawa

[26], Kimoto, Asakawa, Yoda, and Takeoka [27]), and forecasting in futures market (Kaastra and

Boyd [28], Trippi and DeSieno [29]).

2.4 Studies Using General Regression Neural Networks

GRNN is a class of neural networks which is capable of performing kernel regression and

other non-parametric functional approximations.  Although GRNN  has been shown to be a

competent tool for solving many scientific and engineering problems (e.g., signal processing

(Kendrick, Acton, and Duncan [30]), chemical processing (Mukesh [31]), structural analysis

(Williams and Gucunski [32]), assessment of high power systems (Wehenkel [33]), the technique

has not been widely applied to the field of finance and investment.  The only one financial study

primarily based on GRNN is Wittkemper and Steiner [34] in which the regression network is

used to verify the predictability of the systematic risk of stocks.

3. GENERAL REGRESSION NEURAL NETWORK

The General Regression Neural Network (GRNN) was originally proposed and

developed by Specht [35].  This class of network paradigm has the distinctive features of

learning swiftly, working with simple and straightforward training algorithm, and being

discriminative against infrequent outliers and erroneous observations.  As its name implies,

GRNN is capable of approximating any arbitrary function from historical data.  The foundation

of GRNN operation is essentially based on the theory of nonlinear (kernel) regression ---

estimation of the expected value of output given a set of inputs.  Although GRNN can provide a



6

multivariate vector of outputs, without any loss of generality, our description of the GRNN

operating logic is simplified to the case of univariate output.  Equation 2 summarizes the GRNN

logic in an equivalent nonlinear regression formula:

(2)

where  y = the output predicted by GRNN,

X = the input vector (x1, x2,...., xn) which consists of n predictor variables,

E[y | X] = the expected value of the output y given an input vector X, and

f(X, y) = the joint probability density function of X and y.

3.1 Topology of GRNN

The topology of GRNN developed by Specht [35] primarily consists of four layers of

processing units (i.e., neurons).  Each layer of processing units is assigned with a specific

computational function when nonlinear regression is performed.   The first layer of processing

units, termed input neurons, are responsible for reception of information.  There is a unique input

neuron for each predictor variable in the input vector X.  No processing of data is conducted at

the input neurons.  The input neurons then present the data to the second layer of processing

units called pattern neurons.  A pattern neuron is used to combine and process the data in a

systematic fashion such that the relationship between the input and the proper response is

“memorized.”  Hence, the number of pattern neurons is equal to the number of cases in the
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(3)

training set.  A typical pattern neuron i obtains the data from the input neurons and computes an

output 2i using the transfer function of:

where X is the input vector of predictor variables to GRNN,

Ui is the specific training vector represented by pattern neuron i, and

F is the smoothing parameter.

Equation 3 is the multivariate Gaussian function extended by Cacoullos [36] and adopted by

Specht in his GRNN design. 

The outputs of the pattern neurons are then forwarded to the third layer of processing

units, summation neurons, where the outputs from all pattern neurons are augmented. 

Technically, there are two types of summations, simple arithmetic summations and weighted

summations, performed in the summation neurons.   In GRNN topology, there are separate

processing units to carry out the simple arithmetic summations and the weighted summations. 

Equations 4a and 4b express the mathematical operations performed by the ‘simple’ summation

neuron and the ‘weighted’ summation neuron, respectively.  

(4a)

(4b)

The sums calculated by the summation neurons are subsequently sent to the fourth layer of
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(5)

processing unit, the output neuron.  The output neuron then performs the following division to

obtain the GRNN regression output y:

Figure 1 illustrates the schematic sketch of the GRNN design and its operational logic described

above.  It should be noted that the depicted network construct is valid for any model with

multivariate outputs.   The specific design for exchange rate forecasting in our study has only

one (univariate) output neuron.

4. EXCHANGE RATE FORECASTING

4.1 Data

The sample data applied to this study are collected from the AREMOS data base

maintained by the Department of Education of Taiwan.  The entire data set covers 259 monthly

periods running from January 1974 through July 1995.  To serve different purposes, the data are

divided into three sets: the training set (129 months from January 1974 through September

1984), the model selection/determination set (65 months from October 1984 through February

1990), and the out-of-sample testing set (65 months from March 1990 through July 1995).  This

breakdown uses one half of all data for model training and estimation and the remaining half for

model selection and holdout testing.  Once the selected forecasting models are appropriately

specified, they are retrained using data from January 1974 through February 1990 to generate the

out-of-sample forecasts for the hold out testing period.

Several transformations are applied to the original data.  Following the postulations from
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(6)

previous work on MUIP models, we take the natural logarithm of all variables in the data set.

Then lagged differences are computed for each period such that 

where xt  is any variable (either predictor or independent) observed at period t.  The exact

specification for each forecasting model will be presented in the following section 4.3.

4.2 Training of GRNN and Model Selection

GRNN requires supervised training.  The network performs learning by examining the

relationship between each pair of input vector X and the observed corresponding output y and

finally deduces the underlying function by summarizing all of these relationships encountered in

the training set.   Let p denote the number of lags (autoregressive terms) used in the forecasting

model. For the training in this experiment, (129-p) cases from the training set, each

corresponding to an individual training vector of inputs and its matching output, are sequentially

presented to the network.  The network then learns by creating a pattern neuron for each training

case.  This procedure is repeated until all cases in the training set are gone through.  Figure 2

illustrates the GRNN construct after training with (129-p) cases in the training set.

Prediction of the exchange rate forecasts for the model selection/determination period

begins after the network is trained.  The 65 in-sample forecasts are then compared with the

actual observations and the network parameters are adjusted.  Afterward, the best three model

specifications in terms of root mean square error (RMSE) are chosen.  The network is then
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trained using the cases in both training and model selection sets.  Estimation of the exchange

rates in the holdout testing period is then performed and performance statistics for these 65 out-

of-sample forecasts are computed.  The entire experimental procedure is repeated for different

currencies.  

4.3 Forecasting Models

In addition to GRNN, a number of different specifications (models) based on  MLFN

(a.k.a backpropagation network), and multivariate transfer function are examined in our

experiment.  MLFN, a type of neural network architecture widely used in research studies,

should provide a parallel comparison to GRNN in the area of non-parametric neural network

forecasting. On the other hand, multivariate transfer function represents the parametric

counterpart of the more conventional econometric forecasting.  Interested readers should refer to

Wasserman [37] for a detailed description of MLFN.  Also, Markradis, Wheelwright, and

McGee [38] provide a good discussion of the fundamentals of multivariate transfer function and

a brief summary of this forecasting approach can be found in the Appendix. 

In order to obtain a fair and more robust comparison of GRNN’s performance with the

others, we pick up the best three specifications from each forecasting approach.  Like the one for

GRNN, the selection criterion is root mean square error (RMSE); however, an alternative

criterion of mean absolute error (MAE) also leads to the same selection.  In addition, a random

walk model is included for benchmark comparisons.  After the specifications are chosen and the

parameters are determined, the out-of-sample forecasts from each of these forecasting

specifications are generated and subject to statistical evaluations.  Hence, our final statistical

testings involve a total of 10 different forecasting models for each currency.
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Let F(C) and G(C) denote the implied functional relationships estimated by GRNN and

MLFN, respectively.  Tables 1a, 1b, and 1c show the selected specifications for Canadian dollar,

Japanese yen, and British pound forecasting, respectively.  These selected specifications are

chosen from the best three models from each of the GRNN, MLFN, and multivariate transfer

function approaches.  The Appendix contains a detailed description of the notation for

representing the transfer function model.

5. PERFORMANCE EVALUATION

5.1 Primary Statistical Evaluation

Five primary statistical measures are computed from the out-of-sample forecasts made by

each selected specification.  As described in the previous section, each series of forecasts is

checked against with the 65 observed cases in the holdout testing set.  The five evaluation

criteria are: mean absolute error (MAE),  root mean square error (RMSE), U statistic, and the

bias (a) and regression proportion coefficient (b) from the Theil’s Decomposition Test [39].  The

U statistic is the ratio of the RMSE of a model’s forecasts to the RMSE of the random walk

forecasts of no change in the dependent variable.  Since the random walk forecast of next

month’s exchange rate is equal to the current month’s rate, a U statistic of less than 1 implies

that the tested model outperforms the random walk model during the holdout period.  Likewise, a

U statistic in excess of 1 implies that the model performs worse than the random walk model.

The U statistic has a major advantage over the RMSE in the comparison of forecasting models

because it is a unit-free measurement.  Thus, it is easier to calibrate the relative performances by

U statistic than by the unit-bound RMSE.  

The Theil’s Decomposition Test [39] is conducted by regressing the actual observed
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(7)

exchange rates on a constant and the predicted exchange rates êt estimated by a particular model.

The constant a (bias coefficient) should be insignificantly different from zero and the coefficient

b for predicted exchange rate variable (regression proportion coefficient) should be

insignificantly different from one for the forecast to be acceptable.

Table 2 summarizes the performance statistics based on the 65 out-of-sample forecasts

(from March 1990 through July 1995) generated by the GRNN, MLFN, multivariate transfer

function and random walk models.  Results in Table 2 illustrate that the GRNN models generally

outperform the parametric multivariate transfer function and the random walk models.  In

addition, the GRNN models generates more accurate forecasts than MLFN, its neural network

counterpart.  For all currencies, GRNN models yield lower U statistics than the other forecasting

models.  On the other hand, it is also encouraging to find out both MLFN and transfer function

models do improve the forecasting accuracy than the random walk model, which does not make

use of additional information in forecasting.

It is interesting to observe that the forecasts improve by a reasonable degree when the

same input information of a parametric model is provided to the GRNN.  This improvement in

the forecast can be viewed in several directions -- drop in forecast error, gain in explanatory

power, and increase in correlation to the actual observations.  For all currencies examined in this

study, all parametric models based on multivariate transfer function and random walk pattern

exhibit an insignificant correlation to the actual observations.  This notion is supported by the

significance of the regression proportion coefficients computed by the Theil’s Decomposition

tests.  Although the forecasting bias for the two types of neural network models, GRNN and
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MLFN, are both insignificant, improvements in forecast error (MAE and RMSE) as well as

proportion coefficient is apparent when we move from the MLFN architecture to the GRNN

paradigm.  The superior performance of the GRNN models is also supported by a comparison

between the transfer function model (ARIMA(1,0,0)-MUIP(1,0)) with the corresponding GRNN

model (AR(1)-MUIP(1)).  From Table 2, the U statistic and the results of Theil’s Decomposition

Test indicate that the parametric models perform closely to the random walk model.  However, 

when the same set of historical information is applied to the GRNN models, not only the good

performances in bias (a) and correlation to actual observation (b) are retained but also the

forecast errors (MAE, RMSE, and U statistic) are reduced drastically.  It is believed that the

GRNN is capable of deducing the complex nonlinear relationships that most linear models

cannot and that this advantage may contribute to the overall superior performance of the

regression network.

5.2 Auxiliary Statistical Comparison

Both researchers and practitioners are interested not only in the forecasting accuracy of

the various approaches but also in their performances relative to that of the GRNN.  In other

words, it is important to find out whether GRNN forecasting significantly outperforms the

others.  Given this notion, we perform a series of t tests to determine the significance of the

differences of means with respect to the MAE and RMSE measures.

Table 3 reports the results of the conducted pairwise t tests.  For Canadian dollar and

Japanese yen, all comparisons are found to be significant at  " = 0.05 level, suggesting that

GRNN forecasts are statistically better than the forecasts made by MLFN, multivariate transfer

function, and random walk models.  These results are also consistent with the findings in the
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previous section.  However, the conclusions are different in the case of British pound

forecasting.  As indicated in Table 3, the GRNN forecasts yield lower forecast errors than the

random walk model at " = 0.05 level.  Nevertheless, the significance in the difference is reduced

to " = 0.10 level when GRNN forecasts are compared with those estimated by the transfer

function models.  For the comparison with MLFN, the quality of the two neural network

approaches are statistically indifferent, showing that the more conventional MLFN is still a

valuable tool in forecasting research. 

The disparity in the ranking of the comparison tests here suggests some interesting

points.

First, although the forecasting accuracy in terms of MAE and RMSE are quite similar between

MLFN and GRNN, a comparison of their U statistics, which is a relative improvement measure

to the random walk model, indicates the existence of a gap in their performances.  This belief is

further supported by the (regression proportion coefficients) results of Theil’s Decomposition

test in that the GRNN forecasts closely follow the actual exchange rate movements but the

MLFN prediction has some difficulty to match with the reality.  The implication to the

researchers is that a more comprehensive framework of evaluation has to be developed and

misleading conclusions may be drawn if the study relies upon only a couple of conventional

statistics (e.g., RMSE, R-square).  

Second, as we have expected, the experiment illustrates a varying degree of predictability

of different currencies.  For example, based on the values of RMSE and U statistics, we can

observe that, to a certain extent, the movement of Canadian dollar is more predictable than the

other two currencies.  Japanese yen is the worst among the three examined currencies.  This may

be explained by the more volatile economy in Asia than in North America.  A closer examination
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of the MAE and RMSE across different currencies substantiates the notion that the Japanese and

British currencies have undergone wider fluctuations in their history.  The closer performance of

GRNN, MLFN, and multivariate transfer function in British pound suggests the possibility of

developing a hybrid forecasting approach in these hard-to-predict environments.  The hybrid

framework may utilize different neural network architectures or even a mix of learning network

and parametric technique.  In this case, it is hoped that the simultaneous use of neural network

and parametric technique may add predictive strength to the combined network. 

     

6. CONCLUSIONS

This exploratory research examines the potential of using GRNN to predict the foreign

currency exchange rates.  Empirical results suggest that this nonparametric regression neural

network may provide better forecasts than the other forecasting approaches tested in this study. 

This is illustrated by a comparison of the forecasting quality of the GRNN with that of the

MLFN, a neural network architecture widely used in the literature, and multivariate transfer

function, also another general parametric technique in econometric analyses.  The comparative

evaluation is based on a variety of statistics which measure different forms of forecast errors. For

all currencies included in our empirical investigation, GRNN models outperform the models

associated with MLFN, multivariate transfer function, and random walk.  Moreover, our analysis

finds that, except the case of British pound,  the means of MAE and RMSE for the GRNN

forecasts are significantly lower than those of other approaches.  In the future, it would be

interesting and beneficial to verify the predictive strength of GRNN on other financial assets,

especially on the relative basis of MLFN.
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Appendix

Multivariate Transfer Function

A multivariate transfer function model is essentially an ARIMA with added exogenous

variables. The general model can be stated as:

where x1,t-b, x2,t-b, ... are exogenous variables lagged for b periods, L is the lag operator,  yt is the

dependent variable, and εt is the residual.  The addition of exogenous variables can improve

forecasting if these variables help explaining the variation of the dependent variable.  Interested

readers should refer to Makridakis, Wheelwright, and McGee (1983) for a detailed explanation

of the technique.  

Notation

In this paper, we adopt the notation used in RATS (Regression Analysis of Time Series),

a statistical package found in the computer systems of most academic institutes.  The

specification of the transfer function is composed of two parts, one for the univariate (ARIMA)

terms and the other for the exogenous variables.  Thus, a model is denoted by ARIMA(p,i,q)-

MUIP(n/d), where p and q are the numbers of lags in the univariate ARIMA, i is the number of
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differencing, and MUIP(n/d) means MUIP with n numerator lags and d denominator lags.  This

corresponds to the format of Equation 8 stated above.  Below are some representative examples

using this notation.

ARIMA(1,0,1)-MUIP(0/0)

ARIMA(1,0,1)-MUIP(0/1)

ARIMA(1,0,1)-MUIP(1/0)
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Table 1a The Selected Model Specifications for Canadian Dollar Forecasting in the
Holdout Testing Period

The three model specifications yielding the best RMSE in the model selection/determination
period are chosen.  These models will be evaluated using the data in the holdout testing set (from
March 1990 through July 1995).  A brief interpretation of the transfer function modeling and its
notation can be found in the Appendix and Markradis, Wheelwright, and McGee [38] provide a
further discussion of this forecasting technique.

GRNN Specification 1: AR(1)

GRNN Specification 2: AR(12)

GRNN Specification 3: AR(1)-MUIP(1)

MLFN Specification 1: AR(4)

MLFN Specification 2: AR(5)

MLFN Specification 3: AR(1)-MUIP(1)

(Continued)
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Transfer Function Specification 1:  MUIP(0/1)

Transfer Function Specification 2:  ARIMA(1,0,0)-MUIP(1/1)

Transfer Function Specification 3:  ARIMA(0,0,2)-MUIP(0/1)
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Table 1b The Selected Model Specifications for Japanese Yen Forecasting in the
Holdout Testing Period

The three model specifications yielding the best RMSE in the model selection/determination
period are chosen.  These models will be evaluated using the data in the holdout testing set (from
March 1990 through July 1995).  A brief interpretation of the transfer function modeling and its
notation can be found in the Appendix and Markradis, Wheelwright, and McGee [38] provide a
further discussion of this forecasting technique.

GRNN Specification 1: AR(1)

GRNN Specification 2: AR(2)

GRNN Specification 3: AR(12)

MLFN Specification 1: AR(3)

MLFN Specification 2: AR(4)

MLFN Specification 3: AR(1)-MUIP(1)

(Continued)
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Transfer Function Specification 1: ARIMA(1,0,0)-MUIP(1/0)

Transfer Function Specification 2:  ARIMA(0,0,2)-MUIP(0/1)

Transfer Function Specification 3:  ARIMA(0,0,2)-MUIP(1/0)



26

Table 1c The Selected Model Specifications for British Pound Forecasting in the
Holdout Testing Period

The three model specifications yielding the best RMSE in the model selection/determination
period are chosen.  These models will be evaluated using the data in the holdout testing set (from
March 1990 through July 1995).  A brief interpretation of the transfer function modeling and its
notation can be found in the Appendix and Markradis, Wheelwright, and McGee [38] provide a
further discussion of this forecasting technique.

GRNN Specification 1: AR(1)

GRNN Specification 2: AR(2)

GRNN Specification 3: AR(3)-MUIP(1)

MLFN Specification 1: AR(2)

MLFN Specification 2: AR(3)

MLFN Specification 3: AR(1)-MUIP(1)

(Continued)
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Transfer Function Specification 1: ARIMA(1,0,2)-MUIP(0/1)

Transfer Function Specification 2:  ARIMA(2,0,1)-MUIP(0/1)

Transfer Function Specification 3:  ARIMA(1,0,1)-MUIP(0/1)
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Table 2 Performance Statistics for the Out-of-Sample Forecasts in the Holdout Testing Period from March
1990 to July 1995 (65 observations)

The 65 out-of-sample forecasts are estimated by the best three specifications of the GRNN, MLFN, and multivariate transfer function
models.  Performance statistics for the random walk model are also computed for benchmark comparison.  The performance of each
forecasting model are measured by five criteria -- mean absolute error (MAE), root mean square error (RMSE), U statistic, and the bias
coefficient (a) and regression proportion coefficient (b) of Theil’s Decomposition Test.  The bias coefficient (a) and the regression
proportion coefficient (b) represent the constant and the coefficient, respectively, from regressing the actual exchange rate on a constant
and the predicted value.  The respective t statistic is in parenthesis.   * indicates significance at 5% level for H0: a=0 and H0: b=1. 

Canadian Dollar

Specification MAE RMSE U Statistic Bias
Coefficient (a)

Proportion
Coefficient (b)

GRNN
AR(1)

0.00866 0.01065 0.77468 0.00067
(0.4260)

0.77729
(-0.4482)

GRNN
AR(12)

0.00870 0.01056 0.76807 -0.00203
(-0.9218)

1.3264
(1.2873)

GRNN
AR(1)-MUIP(1)

0.00868 0.01073 0.78054 -0.00062
(-0.3311)

1.14151
(1.3200)

MLFN
AR(4)

0.00930 0.01152 0.83779 0.001562
(1.1295)

0.29306*
(-3.1575)

MLFN
AR(5)

0.00984 0.01178 0.85646 0.001689
(1.2172)

0.21559*
(-3.5058)

MLFN
AR(1)-MUIP(1)

0.00944 0.01149 0.83582 0.001419
(1.0143)

0.30875*
(-3.1834)

Transfer Fcn
ARIMA(1,0,0)-MUIP(1/1)

0.00974 0.01199 0.87215 0.00095
(0.7350)

0.39291*
(-5.3441)

Transfer Fcn
ARIMA(0,0,2)-MUIP(0/1)

0.01073 0.01332 0.96869 0.00177
(1.3137)

0.20367*
(-5.9292)

Transfer Fcn
MUIP(0/1)

0.01046 0.01316 0.95717 0.001968
(1.4469)

0.10925*
(-5.3490)

Random Walk 0.01068 0.01375 0.00147
(1.0750)

0.20147*
(-6.5332)

(Continued on the next page)
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Table 2 (Continued)

Japanese Yen

Specification MAE RMSE U Statistic Bias 
Coefficient (a)

Proportion
Coefficient (b)

GRNN
AR(1)

0.02119 0.02716 0.79915 -0.00253
(-0.5682)

1.15638
(0.2514)

GRNN
AR(2)

0.02091 0.02687 0.79060 -0.00115
(-0.2599)

1.45347
(0.7263)

GRNN
AR(12)

0.02152 0.02755 0.81067 -0.00092
(-0.0954)

0.88056
(-0.1053)

MLFN
AR(3)

0.02503 0.03159 0.92952 -0.00736*
(-2.0735)

0.13842*
(-4.2633)

MLFN
AR(4)

0.02480 0.03129 0.92063 -0.00596
(-1.6240)

0.24263*
(-4.4870)

MLFN
AR(1)-MUIP(1)

0.02585 0.03264 0.96043 -0.00728*
(-2.0811)

0.17606*
(-4.9401)

Transfer Fcn
ARIMA(1,0,0)-MUIP(1/0)

0.02305 0.02925 0.86076 -0.00651
(-1.4983)

0.15776*
(-2.7612)

Transfer Fcn
ARIMA(0,0,2)-MUIP(0/1)

0.02476 0.03071 0.90366 -0.00684
(-1.8520)

0.17317*
(-3.8799)

Transfer Fcn
ARIMA(0,0,2)-MUIP(1/0)

0.02488 0.03093 0.91024 -0.00736
(-1.8033)

0.05686*
(-3.9585)

Random Walk 0.02667 0.03398 -0.00588
(-1.6584)

0.23853*
(-6.1236)

The respective t statistic is in parenthesis.   * indicates significance at 5% level for H0: a=0 and H0: b=1. 

(Continued on the next page)
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Table 2 (Continued)

British Pound

Specification MAE RMSE U Statistic Bias 
Coefficient (a)

Proportion
Coefficient (b)

GRNN
AR(1)

0.02212 0.02865 0.83143 -0.00023
(-0.0645)

1.37134
(0.8022)

GRNN
AR(2)

0.02202 0.02855 0.82852 -0.00014
(-0.0398)

1.38586
(0.8526)

GRNN
AR(3)-MUIP(1)

0.02161 0.02995 0.86893 0.00105
(0.2788)

1.73073
(1.6130)

MLFN
AR(2)

0.02309 0.02996 0.86932 0.00092
(0.2474)

0.59779
(-1.3206)

MLFN
AR(3)

0.02468 0.03119 0.90504 0.00167
(0.4422)

0.41215*
(-2.3484)

MLFN
AR(1)-MUIP(1)

0.02216 0.02990 0.86757 0.00437
(1.1354)

0.65691
(-1.4107)

Transfer Fcn
ARIMA(1,0,2)-MUIP(0/1)

0.02478 0.03200 0.92855 -0.00024
(-0.0659)

0.40577*
(-3.6312)

Transfer Fcn
ARIMA(2,0,1)-MUIP(0/1)

0.02499 0.03174 0.92094 -0.00147
(-0.4137)

0.45679*
(-4.1636)

Transfer Fcn
ARIMA(1,0,1)-MUIP(0/1)

0.02305 0.03141 0.91136 -0.00044
(-0.1187)

0.43981*
(-3.3089)

Random Walk 0.02706 0.03446 0.00075
(0.21139)

0.36029*
(-5.4774)

The respective t statistic is in parenthesis.   * indicates significance at 5% level for H0: a=0 and H0: b=1. 
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Table 3 Pairwise t Tests for the Difference in Forecasting Accuracy Between GRNN
and Other Forecasting Approaches

The t statistics are based on comparisons of the MAE and RMSE of the GRNN forecasts in the
holdout testing period (from March 1990 to July 1995) with those of the MLFN, multivariate
transfer function, and random walk models.  The best three specifications from each forecasting
approach provide a total of 3x65=195 matching observations for each t test.  The null hypothesis is
no difference in the forecasting accuracy between GRNN and the tested approach.     
* and ** indicate significance at the 5% and 10% levels, respectively.

Canadian Dollar

MAE RMSE

t Statistic p Value t Statistic p Value

MLFN 2.3543* 0.0195 2.3178* 0.0215

Transfer Function 2.8192* 0.0053 3.0259* 0.0028

Random Walk 3.7160* 0.0003 5.0664* 7.87X10-7

Japanese Yen

MAE RMSE

t Statistic p Value t Statistic p Value

MLFN 3.8208* 0.0002 4.0384* 7.77X10-5

Transfer Function 3.7393* 0.0002 3.3474* 0.0010

Random Walk 3.6447* 0.0003 3.5303* 0.0005

British Pound

MAE RMSE

t Statistic p Value t Statistic p Value

MLFN 1.6192 0.1071 1.4350 0.1529

Transfer Function 1.7231** 0.0865 1.7344** 0.0845

Random Walk 3.6214* 0.0004 2.6995* 0.0076
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